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Abstract
The symplectic integrators CSABAν & CSBABν are used

in order to calculate single particles dynamics in accelerators

and storage rings. These integrators present only positive

steps and can be accurate up to a very high order. They are

compared with already existing splitting methods of MAD-

X with respect to their impact on various beam dynamics

quantities, for different beam elements.

INTRODUCTION
The necessity of designing high-performance particle ac-

celerators and storage rings led in developing a number of

different tracking programs in order to propagate and study

the evolution of particle trajectories. In particular, the knowl-

edge of particle dynamics for a great interval of time (thou-

sands or millions of turns) is essential in order to assure their

long-term stability in presence of various non-linearities.

Neglecting radiating effects, the single particle motion in

accelerators is represented by a composition of symplectic

maps generated by the Hamiltonian of the corresponding

magnetic elements. Tracking codes have to employ sym-

plectic integrators in order to guarantee that the numerical

integration preserve the Hamiltonian structure of the system,

i.e. the “energy”, which should be an integral of motion and

prevent the particles to have an artificial “diffusion”.

Preceding works proposed various symplectic integrators

[1–3]. The ones that have an order of accuracyO(τζ ) greater
than two (ζ > 2) incorporate negative “time” steps [4]. On
the other hand Laskar and Robutel [5], by generalising and

enriching McLachlan’s work [6], proposed a set of symplec-

tic integrators with only positive steps even in cases with

ζ > 2. These symplectic integrators are valid for perturbed
Hamiltonians of the formH = A + εB, where A and B are

independently integrable.

CSABAν & CSBABν INTEGRATORS
The Hamilton’s equations of motion for a problem with

N degrees of freedom can be written as:

d�X
dt
= {H , �X} = LH �X (1)

where t is the independent variable and �X =

(q1, p1, ..., qN, pN ) is a generalized vector containing
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the canonical conjugate variables qi and pi . The expression
{H , �X} refers to the Poisson brackets that are described
by {ω(q, p), λ(q, p)} = ∑N

j=1

[
dω
dpj

dλ
dqj
− dω

dqj

dλ
dpj

]
, the

action of the Lie operator LH is defined by Lωλ = {ω, λ}.
The distance s along the lattice, instead of the time, is

used as the integration variable. The formal solution of

Eq.(1) from the initial position si to the final one s f with
τ = s f − si is given by:

�X f
=
∑
n≥0

τn

n!
Ln
H �Xi

= eτLH �Xi
(2)

where i and f stand for the initial and final values respec-

tively, �X(si) ≡ �Xi
are the initial conditions and eτLH is the

Lie transformation.

Using the Backer-Campbell-Hausdorff (BCH) theorem,

the Lie transformation eτLH = eτ(LA+LεB ) can be re-

expressed by an infinite concatenation of Lie transforma-

tions ec jτLA and ed jτLεB ( j = 1, 2, . . . ), if A and B do not

commute ({A, B} � 0). Truncating this infinite series up

to a certain order of j, results in a symplectic integrator of
an effective Hamiltonian, H̃ = H + O(τζ ). Using sym-
plectic integrators, the dynamical behavior of the nominal

Hamiltonian (H ) is approximated by an effective one (H̃ )

introducing an error term of the order O(τζ ). Increasing the
order of j (the number of splittings) and choosing appropri-
ately the values of cj and d j , the deviation of H̃ fromH is

reduced (ζ is increased). When the term F = {{A, B} , B} is
integrable, it can be proved that the symplectic integrators

CSABAν & CSBABν can be used [5]. They are described

by the following recursion relations:

CSABA2n = e−u f2nLF ec1τLAed1τLεB ... (3a)

ednτLεB ecn+1τLAednτLεB ...ed1τLεB ec1τLAe−u f2nLF

CSABA2n+1 = e−u f2n+1LF ec1τLAed1τLεB ... (3b)

ecn+1τLAedn+1τLεB ecn+1τLA ...ed1τLεB ec1τLAe−u f2n+1LF

CSBAB2n−1 = e−uθ2n−1LF ed1τLεB ec2τLA ... (3c)

ednτLεB ecn+1τLAednτLεB ...ec2τLAed1τLεB e−uθ2n−1LF

CSBAB2n = e−uθ2nLF ed1τLεB ec2τLA ... (3d)

ecn+1τLAedn+1τLεB ecn+1τLA ...ec2τLAed1τLεB e−uθ2nLF

where u = 1
2
τ3ε2. All the above integrators are of the order

O(τκε + τ4ε2), with κ = ν + 2, if ν is even and κ = ν + 3, if
ν is odd. The values of the various constants cj , d j , f j and
θ j can be found in [5].
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USE OF THE CSABAν & CSBABν

The particle dynamics is described by different Hamilto-

nians composed by the various local magnetic multipoles in

the lattice. In this paper, the approximations of the Hamil-

tonians for high-energy and large machines are used. Their

general form is H = A(p2, qn) + B(qm) with n = 0, 1 &
m = 0, 1, 2, . . . . After calculating the term F = {{A, B} , B},
it can be shown that it depends only on positions qi . So F
is integrable and the CSABAν & CSBABν can be used. Its

general form for different multipoles - except for dipoles

(m = 1), is a non-Maxwellian potential given by:

F (x, y) =
1

1 + δ

(
eB0
P0
σm−1

)2

r2(m−1) , (4)

with σm−1 = (bm−1, am−1) being the (2m)th multipole co-
efficients, bm−1 refers to the normal and am−1 to the skew
multipoles. The B0 is the main dipole field, P0 is the refer-
ence momentum, e is the electric charge, r =

√
x2 + y2 and

δ = ΔP/P0 the relative momentum deviation.

In earlier works related to accelerator problems [7, 8]

the use of the CSABAν & CSBABν integrators provided

very good results. For this paper, they are used in order to

integrate the motion of a particle in a quadruple and a FODO

cell. Different parameters are calculated and compared with

the results taken from the improved TEAPOT integrator [9]

that is used in MAD-X [10].

The quadrupole Hamiltonian after some approxima-

tions [11] gets the following form:

HQ (x, y, l, px, py, δ; s) =
p2x + p2y
2(δ + 1)

+
K10
2

(x2 − y2) , (5)

with K10 being the quadrupole’s strength (K10 > 0 for a

focusing quadrupole and K10 < 0 for defocusing one).
The maps of the different Lie transformations that are

needed to construct the CSABAν & CSBABν integrators

with ε ≡ 1, A ≡ p2x+p
2
y

2(δ+1) , B ≡ K10
2

(x2 − y2), FQ = K120
1+δ r2,

τ ≡ LQ and q′ =
{

HQ, pq
}
= pq/(1 + δ) are given below:

eτc j LA :

{
x f = xi + cjLQx ′i, x ′f = x ′i

y f = yi + cjLQy′i, y′f = y′i
,

eτd j LB :

{
x f = xi, x ′f = x ′i − d j

K10
δ+1 LQxi

y f = yi, y′f = y′i + d j
K10
δ+1 LQyi

,

euθ j LFQ :

{
x f = xi, x ′f = x ′i + θ j ( K10δ+1 )2L3Qxi

y f = yi, y′f = y′i + θ j ( K10δ+1 )2L3Qyi
.

Calculation of the Accuracy Order
The improved TEAPOT is obtained after developing a

new splitting pattern. The primarily aim of this was to well

describe the M2,1 element of the quadrupole’s exact matrix.

In general, the same splitting for all the other multipoles

of the lattice can not be applied. On the other hand, the

CSABAν & CSBABν integrators are completely generic.

Each element Mq
j,k of the quadrupole exact matrix Mq , is

Taylor expanded and compared with the corresponding Mj,k

from the CSABAν and TEAPOTν integrators. The order of

accuracy ζ for each element of the integrators is plotted in
Fig. 1. The numbers in the parentheses refer to the number

of kicks and the total maps needed to construct the integrator,

e.g. for (4, 7) the integrator consists of 7 maps from which

the 4 are kicks and the other drifts. The CSABAν gives equal

(for the CSABA1) or better description than TEAPOTν for all

the elements Mj,k . TEAPOT splittings improve slowly with

the increase of the number of kicks. The overall behaviour

M of the CSABAs is two orders of magnitude better than all

the TEAPOTs. The only exception is the CSABA1 which is

equivalent to the TEAPOTs behaviour. The CSBABs have

the same results with the CSABAs.

DKD�1,3�
�leapfrog�

TEAPOT2�2,5�

CSABA1�3,5�

TEAPOT3�3,7�

CSABA2�4,7�

TEAPOT4�4,9�

CSABA3�5,9�

TEAPOT5�5,11�

0 1 2 3 4 5
Ζ

M2,2

M2,1

M1,2

M1,1

M

Figure 1: The order of accuracy ζ for each element Mj,k using the

CSABAν and TEAPOTν integrators.

Calculation of the Phase Advance
Studying a physical quantity can provide a better under-

standing of the CSABAν & CSBABν integrators validity.

Hence, the quadrupoles’ phase advance is calculated using

different integrators. For a linear non-periodic lattice, the

phase advance μ between the positions si and s f is given by
the following equation:

Cot(μ) =
M1,1

M2,1
βi + αi , (6)

where βi and αi are the Courant-Snyder parameters at si

and Mj,k are the transfer matrix elements from si to s f .
For the different integrators, the absolute value of the

relative difference of the ratio M1,1/M2,1 with respect to the

ratio Mq
1,1/M

q
2,1 of the exact quadrupole is studied. Some

characteristic results are presented in Fig. 2. The CSABA2

in Fig. 2b, has a good accuracy (deep purple colour) for

a greater area of quadrupole strength K10 and length LQ,

when compared to TEAPOT5 shown in Fig. 2a. TEAPOT5
consists of a higher number of maps, 11 in contrast to the 7

maps of the CSABA2. Indeed, the CSABAν and similarly the

CSBABν are not only more accurate than TEAPOTs but they
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are also more economical with respect to integration time.

In Fig. 2b and 2a, the area between the white dashed lines

corresponds to stable motion through a symmetric FODO

cell, with the length of each drift being 20m.

Figure 2: The absolute value of the relative difference of the ratio

M1,1/M2,1 from the ratio Mq
1,1/M

q
2,1 as a function of different K10

and LQ , for the TEAPOT5 (a) and the CSABA2 (b). The area

between the white dashed lines guarantees stable motion through a

symmetric FODO cell.

Calculation of the Phase Advance Distortion
The phase advance distortion Δμ of an off momentum

particle, traveling in a non-symmetric FODO cell (or DOFO

if K10 < 0), is calculated using the CSABAν - CSBABν

and TEAPOTν . In an accelerator with periodic structure,

that consists of mirror symmetric cells, the phase advance

distortion between twomirror symmetric points is calculated

by:

Δμ =
M1,1 − M̃1,1√
1 − M2

1,1

, (7)

where M̃ is the transfer matrix of the perturbed cell and M
of the unperturbed one.

Using the different integrators, the absolute value of the

relative difference Δμwith respect to ΔμfodofEQ that is calcu-
lated using the quadrupole’s exact matrix is studied. Some

characteristic results are presented in Fig. 3. In this partic-

ular case, ΔP/P = 1% and the central quadrupole strength

is 20% weaker than the ones at the boundaries of the cell.

The results from the CSABA3 can be seen in Fig. 3b and the

ones from the TEAPOT4 in Fig. 3a. As can be seen, the two

integrators have a more similar behaviour. The CSABA3

results are slightly better for larger values of the |K10 |. Also,
the CSABA3 gives symmetric results with respect to the

positive/negative values of K10, but this is not the case for
the TEAPOT4.

CONCLUSION
The CSABAν & CSBABν that are high order symplec-

tic schemes have only positive integration steps. They

are used in order to calculate the particle’s dynamics in

different linear lattices. The results are compared with

the improved TEAPOT ones (an integration method that

constructed specially for linear elements). Obviously the

CSABAν & CSBABν calculate with similar and most of

Figure 3: Using the different integrators, the absolute value of the

relative difference of Δμ from Δμ f odof EQ is calculated, for the

TEAPOT4 (a) and the CSABA3 (b).

the times greater accuracy the parameters studied. In addi-

tion, for results having similar accuracy with TEAPOT, the

CSABAs and CSBABs need less maps and the integration is

faster. Furthermore, the CSABAs & CSBABs can be used

to integrate the particle’s motion though a nonlinear lattice,

a study that is currently under development.
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